a2 United States Patent

Wijayaratne et al.

US009483491B2

US 9,483,491 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) FLEXIBLE PERMISSION MANAGEMENT
FRAMEWORK FOR CLOUD ATTACHED
FILE SYSTEMS

(71) Applicant: Egnyte, Inc., Mountain View, CA (US)

(72) Inventors: Ravi Wijayaratne, San Jose, CA (US);
Ray White, San Jose, CA (US);
Manish Marathe, San Jose, CA (US);
Aahz, San Carlos, CA (US); Rajesh
Ram, Union City, CA (US); Amrit
Jassal, Morgan Hill, CA (US)

(73) Assignee: EGNYTE, INC., Mountain View, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 487 days.

(21) Appl. No.: 13/689,648

(22) Filed: Nov. 29, 2012

(65) Prior Publication Data
US 2014/0149461 Al May 29, 2014

Related U.S. Application Data
(60) Provisional application No. 61/564,628, filed on Now.

29, 2011.
(51) Int.CL
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
GO6F 21/62 (2013.01)

100

(52) US. CL
CPC ... GO6F 17/30194 (2013.01); GOGF 21/6236
(2013.01)
(58) Field of Classification Search
USPC ottt 707/785
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0129627 Al* 6/2006 Phillips et al. 709/200

2010/0070870 Al* 3/2010 Halperin et al. 715/742
2010/0077026 Al* 3/2010 Watanabe et al. 709/203
2010/0241668 Al* 9/2010 Susanto et al. 707/784

* cited by examiner

Primary Examiner — Alex Gofman

Assistant Examiner — Muluemebet Gurmu

(74) Attorney, Agent, or Firm — Larry E. Henneman, Jr.;
Gregory P. Gibson; Henneman & Associates, PLC

(57) ABSTRACT

A method of managing file permissions in a remote file
storage system includes defining permissions for the remote
file storage system and controlling access to objects on the
remote file storage system according to the permissions of
the remote file storage system. The permissions are trans-
ferred to a client file storage system remote from the remote
file storage system, and access to objects on the client file
storage system is controlled according to the permissions of
the remote file storage system. A remote file storage system
includes a permissions file generator operative to generate a
permissions file, which is transmitted to a client file storage
system for enforcement at the client file storage system.

26 Claims, 10 Drawing Sheets

US 9,483,491 B2

Sheet 1 of 10

Nov. 1, 2016

U.S. Patent

FIG. 1

US 9,483,491 B2

U.S. Patent Nov. 1, 2016 Sheet 2 of 10
102
To Internet 106
Wide-Area Processing Working User Interface
Network Unit(s) Memory Devi
Adapter (e.g., RAM) evice(s)

p 1 \202

1 \\204

1 \206

\\208
L

!

1 \\216

Local Network
Adapter

!

Cloud
Services

1 \210

Non-Volatile
Memory
(e.g., ROM, Hard
Drives, etc.)

\212

\214

FIG. 2

N\ >
220
3 3
Client Data Client Data Client Data
Storage (1) Storage (2) Storage (n)

222(1) 222(2) 222(n)

US 9,483,491 B2

Sheet 3 of 10

Nov. 1, 2016

U.S. Patent

90¢

| gQ uorssiud g |

pnord
220

19uIU]

Q0BJIAU]
JUAS

80€—~_ |

90TAIOG

BIEPBIOIN
UOISSTWIdJ

s[npow

JUSWIIOJUD
UOISSTULIdJ

90BJIIUI

$SO008 1]

4

cle

901AIOS

g0 elepeoN
WIISASII]

US 9,483,491 B2

Sheet 4 of 10

Nov. 1, 2016

801
XX
UL [e307] JUSL) 1B307]
81 v.:/,
601 depy
o I,J B LOMIN i JoUIAU]
FOol oL
™ BOIV-3PIM
80% ://. (484 ..// 0l¥ J %
(s)oo180Q SIAIRS 1o1depy
90RIOIU] JOS) pnoj) [e207] JI0MIBN] [8907]

‘.

ol
Ew..l/, M oow‘.l/ H vow..l/ M

(919 “saAn(Q “g-
H VY 50
pIeH ‘NOY “879) A K1owo : (S
AJOWATA 3 SUISSA00I]
UBIoM '
S[HB[OA-UON

331A8(SYN paduequ3 pnop [e207]

U.S. Patent

US 9,483,491 B2

Sheet 5 of 10

Nov. 1, 2016

U.S. Patent

NOm/

WNSAG T 180T

(suorssiuad pnopd)

JUIWIRDIOJU] UOISSTIUIR J

SINPOIA SHA 47908

(equies) JoAIRS

vOmk 4

80¢

depy
| suoIssTuIog

\.oﬁm

puaorg
UOISSIWIDJ

(ayo®d)
1\!
818 q1L

Jodaamg

ot

& 44

ffooresvceccoo s

4
W1 SMopuLM | —801

775~

SUISESSON frof

| ” a5eI1018

G 81

91¢

NOSI

REVALITITLIIZAN

)

45

9Je}Ivlu] pnoj)

M

ajoway
oL

(1) eoBpIRIU] JO87) [€007]

TS

U.S. Patent

Nov. 1, 2016 Sheet 6 of 10

US 9,483,491 B2

Permission Metadata Header

File System Elements

Name Elements

ACL Elements

Child Addresses

Fig. 6

U.S. Patent

Nov. 1, 2016 Sheet 7 of 10

US 9,483,491 B2

Map Name

Map Version

Next Map

Generation Number

Timestamp

Total Filesystem Elements

Total ACEs

Total List Elements

Filesystem Element Offset

Filesystem Element Size

Next Free Filesystem Element

Name Element Offset

Name Element Size

Next Free Name Element

ACL Offset

ACL Size

Next Free ACL Offset

Child List Offset

Child List Size

Next Free Child List

Memory

Fig. 7

US 9,483,491 B2

Sheet 8 of 10

Nov. 1, 2016

U.S. Patent

8 "SI

H TIV

a 1v

g JOISITPIYO

D TIV

OV

g 1)V

DY

vV 1OV

OV

T oweN

(1 SweN

OV

Fselem Pir. ¢ 41

) UIBN

Fselem Ptr.

Fselem Ptr.

q sweN

SUIEN

Child List

V oweN

T REF B
Y M Y & ? E

SWERS

aweN

g WS,

 waesy

D waes g

g weasy

V WI[3s,]

|

aIed

U.S. Patent Nov. 1, 2016 Sheet 9 of 10 US 9,483,491 B2

U.S. Patent Nov. 1, 2016 Sheet 10 of 10 US 9,483,491 B2

1000 ..
Y Define Permissions Framework for
Remote File Storage System

A

Control Access to Objects on Remote
File Storage System According To ™_ 1004
Permissions Framework

Transfer Permissions Framework to
Client File Storage System

y

Control Access to Objects on Client
File Storage System According
Permissions Framework

y

Maintain Synchronization of
Permissions Framework on Remote | N—1010
File Storage System and Client File

Storage System

FIG. 10

US 9,483,491 B2

1
FLEXIBLE PERMISSION MANAGEMENT
FRAMEWORK FOR CLOUD ATTACHED
FILE SYSTEMS

RELATED APPLICATIONS

This application is a nonprovisional application that
claims the benefit of copending U.S. Provisional Patent
Application No. 61/564,628, filed Nov. 29, 2011 by the same
inventors and entitled “Flexible Permission Management
Framework For Cloud Attached File Systems”, which is
incorporated herein by reference in its entirety.

BACKGROUND

1. Field of the Invention

This invention relates generally to cloud computing sys-
tems, and more particularly to cloud file storage systems.
Even more particularly, this invention relates to the man-
agement of file permissions for cloud attached file systems.

2. Description of the Background Art

Cloud computing systems are known. In cloud computing
systems, computing and storage services are provided to
remote clients over a wide area network such as the Internet.

If the remote clients are using a file system that is different
from that of the cloud storage server, then problems can
occur in the handling of the permissions for the stored files.
The problems are compounded when several different net-
worked file system clients are accessing the local file system
and the cloud collaboratively.

What is needed, therefore, is a unified permission frame-
work associated with the cloud and the local fileserver.

SUMMARY

The present invention overcomes the problems associated
with the prior art by providing a virtual file system with an
associated permission framework. The invention facilitates
overriding the original file system permissions (e.g., of a
local file storage system) to superimpose a cloud based
permission scheme. The permission scheme overlay is done
in such a way as to minimize its impact on the file system
operations.

An embodiment of the invention is based on a novel
permission data structure that uses access control lists
(“ACLs”). The example data structure enables efficiently
storing a variable-size access control list data structure in
contiguous memory, facilitating storing and retrieving the
permission rules without any additional processing.

Another advantage is that repeated enforcement process-
ing is prevented by the permission enforcement framework
caching enforcement decisions on a TLB.

Yet another advantage is that methods of the invention can
be extended to superimpose any cloud permission frame-
work on a fileserver file system.

An example remote file storage system (e.g., a cloud file
server) includes memory for storing file objects received
from a client, a client interface, a permissions file generator,
and a permissions enforcer. The client interface is operative
to receive the file objects from a client, to provide the file
objects to the client, to receive data indicative of permissions
associated with the file objects, and to provide a permissions
file to the client. The permissions file generator is operative
to generate a permissions file based on the data indicative of
the permissions associated with the file objects, and the
permissions enforcer is operative to control access to the file
objects according to the permissions file. A virtual file

10

15

20

25

30

35

40

45

50

55

60

65

2

system module is operative to define a virtual file system
structure for the file objects, and the permissions file gen-
erator is operative to generate the permissions file based at
least in part on the virtual file system structure. As shown by
way of example, the permissions file associates access
control lists (ACLs) with the file objects. In a disclosed
embodiment, the remote file server includes a processing
unit, and the permissions file generator and the permissions
enforcer are code modules executed by the processing unit.

Synchronization is maintained between the permission
files on the local and remote file storage systems. In an
example embodiment, the client interface is also operative to
receive additional data indicative of permissions associated
with the file objects (e.g., changes, new files, etc.). Then, the
permissions file generator is operative to generate an
updated permissions file based at least in part on the addi-
tional data indicative of permissions associated with the file
objects. The client interface then provides the updated
permissions file to the client (e.g., to the local file storage
system of the client). In a particular embodiment, a syn-
chronizer is operative to synchronize the file objects stored
on the remote file storage system with file objects stored on
a file storage system of the client, and also to synchronize the
permissions file with a permissions file on the file storage
system of the client.

A local file storage system (e.g., office local cloud) for use
with a remote file storage system (e.g., a cloud file server)
is also disclosed. The local file storage system includes
memory for storing file objects from local clients, a client
interface, a remote file server interface, and a permissions
enforcer. The client interface is operative to receive the file
objects from local clients and to provide the file objects to
the clients. The remote file server interface is operative to
receive a permissions file indicative of permissions associ-
ated with the file objects from a remote file server. The
permissions enforcer is operative to control access to the file
objects by the local clients according to the permissions file.

In a particular embodiment, the local file storage system
additionally includes a virtual file system module operative
to present a virtual file system structure associated with the
file objects to the local clients. The permissions file is based
at least in part on the virtual file system structure. For
example, the permissions file associates access control lists
with elements of the virtual file structure.

An example hybrid file storage system (e.g., local file
storage system in combination with a remote file storage
system) is also disclosed. The example hybrid file storage
system includes a local file storage system for storing and
providing file objects to local clients and a remote file
storage system for storing and providing copies of the file
objects. A permissions file generator on at least one of the
local file storage system and the remote file storage system
is operative to generate a permissions file and to provide the
permissions file to the local file storage system and the
remote file storage system. A first permissions enforcer on
the local file storage system is operative to control access to
the file objects on the local file storage system according to
the permissions file, and a second permissions enforcer on
the remote file storage system is operative to control access
to the file objects on the remote file storage system according
to the permissions file. In the example embodiment, a file
object synchronizer is operative to synchronize the file
objects stored on the remote server and the file objects stored
on the local server. In addition, a permissions file synchro-
nizer is operative to synchronize the permissions file on the
remote server and the permissions file on the local server.

US 9,483,491 B2

3

A method of managing file permissions in a remote file
storage system is also disclosed. An example method
includes defining permissions for the remote file storage
system and controlling access to objects on the remote file
storage system according to the permissions of the remote
file storage system. The method also includes transferring
the permissions to a client file storage system remote from
the remote file storage system and controlling access to
objects on the client file storage system according to the
permissions of the remote file storage system. A virtual file
system structure for the objects on the remote file storage
system is defined, and the permissions framework is defined
based at least in part on the virtual file system structure.
Controlling access to objects on the client file storage system
according to the permissions of the remote file storage
system includes overriding permissions of the client file
storage system.

The example method additionally includes altering the
permissions of the remote file storage system at the remote
file storage system and controlling access to objects on the
remote file storage system according to the altered permis-
sions of the remote file storage system. The altered permis-
sions are transferred to the client file storage system, and
access to objects on the client file storage system is con-
trolled according to the altered permissions of the remote file
storage system. Optionally, the step of transferring the
altered permissions to the client file storage system occurs in
conjunction with a data synchronization process between the
remote file storage system and the client file storage system.
As another option, the step of transferring the altered per-
missions to the client file storage system can occur in
response to an explicit command from a user. As yet another
option, the step of transferring the altered permissions to the
client file storage system can occur in response to the step of
altering the permissions.

Alternatively, the example method additionally includes
altering the permissions of the remote file storage system at
the client file storage system and controlling access to
objects on the client file storage system according to the
altered permissions of the remote file storage system. The
altered permissions are transferred to the remote file storage
system; and access to objects on the remote file storage
system is then controlled according to the altered permis-
sions of the remote file storage system. Optionally, the step
of transferring the altered permissions to the remote file
storage system occurs in conjunction with a data synchro-
nization process between the remote file storage system and
the client file storage system. As another option, the step of
transferring the altered permissions to the remote file storage
system can occur in response to an explicit command from
a user. As yet another option, the step of transferring the
altered permissions to the remote file storage system can
occur in response to the step of altering the permissions.

In an example method, the step of defining permissions
for the remote file storage system includes associating
access control lists with the objects on the remote file storage
system.

A remote file storage system can define permissions for a
plurality of different clients using the remote file storage
system. An example method to do so additionally includes
defining a plurality of permissions sets for the remote file
storage system and associating each of the permissions sets
with a respective one of a plurality of clients. The method
additionally includes controlling access to objects on the
remote file storage system by the clients according to the
permissions sets of the remote file storage system. Each of
the permissions sets is transferred to a respective one of a

10

15

20

25

30

35

40

45

50

55

60

65

4

plurality of client file storage systems. Each client file
storage system is associated with one of the plurality of
clients and is located remotely with respect to the remote file
storage system. Access to objects on each client file storage
systems is controlled according to the permission set of the
remote file storage system associated with the respective
client.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the
following drawings, wherein like reference numbers denote
substantially similar elements:

FIG. 1 is a diagram of a cloud computing system;

FIG. 2 is a block diagram of a remote cloud file storage
server;

FIG. 3 is a relational diagram of the functional aspects of
a virtual file system (VFS) permission framework imple-
mented within the cloud computing system of FIG. 1;

FIG. 4 is a block diagram of a local cloud file storage
server;

FIG. 5 is a relational diagram of the functional aspects of
the local cloud services of the local cloud enhanced NAS
device of FIG. 4;

FIG. 6 is an example data structure for in-memory per-
missions;

FIG. 7 is an example data structure for the header field of
the data structure of FIG. 4;

FIG. 8 is a diagram illustrating the relationships between
file system elements of the virtual file system permissions
framework;

FIG. 9 is a directory structure corresponding to the
relational diagram of FIG. 6; and

FIG. 10 is a flow chart summarizing one example method
of implementing a permissions framework of the present
invention.

DETAILED DESCRIPTION

The present invention overcomes the problems associated
with the prior art, by providing a flexible permission man-
agement framework for cloud attached file systems. In the
following description, numerous specific details are set forth
in order to provide a thorough understanding of the inven-
tion. Those skilled in the art will recognize, however, that
the invention may be practiced apart from these specific
details. In other instances, details of well-known cloud
computing practices and components have been omitted, so
as not to unnecessarily obscure the present invention. For
example, the invention is described with reference to a cloud
file storage server. However, aspects of the invention can be
advantageously used on fileservers with any cloud-based
permission scheme.

FIG. 1 shows a cloud computing system 100 to include a
cloud server 102 and a local cloud server 104, which
communicate and are synchronized via the Internet 106.
Local cloud 104 can be hosted by a file server in an office
107 and is, therefore, sometimes referred to as an office local
cloud (OLC). Local clients 108 can access cloud files by
directly accessing files/objects stored on local cloud 104, via
a local network 109. Remote clients 110 can access cloud
files by accessing files/objects stored on cloud 102, via
Internet 106, or via some other connection 112 with cloud
server 102. The local cloud server 104 is synchronized with
the cloud server 102 to provide local data access and remote
data security.

US 9,483,491 B2

5

FIG. 2 is a block diagram of cloud server 102. Cloud
server 102 includes a wide-area network adapter 202, one or
more processing units 204, working memory 206, one or
more user interface devices 208, a local network adapter
210, a cloud services component 212, and non-volatile
memory 214, all intercommunicating via an internal bus
216. Processing units(s) 204 impart functionality to cloud
server 102 by executing code stored in any or all of
non-volatile memory 214, working memory 206, and cloud
services 212. Cloud services 212 represents hardware, soft-
ware, firmware, or some combination thereof, that provides
the functionality of the flexible permission management
framework described herein.

Wide area network adapter 202 provides a means for
cloud server 102 to communicate with remote clients 108
and local cloud 104 via Internet 106. Local network adapter
210 provides a means for accessing a plurality of data
storage devices 222(1-»), via a local private network 220.
Clients’ files are stored in and retrieved from data storage
devices 222(1-n) as needed. Additional data storage devices
222(n+) can be added as needed to provide additional
storage capacity. In this example embodiment, data storage
devices 222 are network attached storage (NAS) devices, but
any suitable type of storage device can be used.

FIG. 3 is a relational diagram of the functional aspects of
a virtual file system (VFS) permission framework imple-
mented within the cloud computing system of FIG. 1. In this
illustrated embodiment, the functional aspects are provided
by cloud services 212, but the functional elements of the
system can be distributed across other service modules or
even other machines.

Clients 110 access files stored on cloud server 102 via file
access interface 302. Clients 110 can connect with file access
interface 302 either via the Internet 106 or connections 112
(FIG. 1). Responsive to a client 110 request for a file or
folder access, file access interface 302 enforces the cloud
permissions scheme via a permission enforcement module
304. Permission enforcement module 304 accesses the
access control lists (ACLs) stored in a permissions database
via permission meta data service 308. Optionally, a special
permission file is created based on the ACLs to facilitate
more efficient enforcement of the permissions. If access is
permitted after the permissions are enforced, file access
interface 302 retrieves the requested object (file or folder),
using a filesystem metadata database service 310 to access
a filesystem metadata database 312, and provides the
requested object to the client 110.

As will be described in greater detail, the permissions
scheme of cloud server 102 is provided to local cloud 104
for enforcement at local cloud 104. A sync interface 314 is
operative to provide permissions file(s) to local cloud 104
(and in some cases receive permission files from local cloud
104), so that the same permissions scheme can be imple-
mented on both cloud 102 and local cloud 104. Sync
interface 314 obtains the permission file(s) provided to local
cloud 104 from permission enforcement module 304.

FIG. 4 is a block diagram showing local cloud 104 in
greater detail. In this particular embodiment, local cloud 104
is an enhanced network attached storage (NAS) device that
includes one or more processing units 404, working memory
406, one or more user interface devices 408, a local network
adapter 410, a local cloud services component 412, and
non-volatile memory 414, all intercommunicating via an
internal bus 416. Processing units(s) 204 impart functional-
ity to local cloud server 104 by executing code stored in any
or all of non-volatile memory 414, working memory 406,
and local cloud services 412. A wide-area network adapter

10

15

20

25

30

35

40

45

50

55

60

65

6

418 facilitates communication with remote cloud 102 (FIG.
1) via local network 109 and the Internet 106.

Non-volatile memory 414 also provides storage for client
files/objects. By way of example, the nonvolatile memory
414 is shown to include (in addition to other types of
memory) a set of hard drives arranged in a RAID configu-
ration. The client’s files/objects on the RAID drives can be
accessed by local clients 108 via local network 109, in
accordance with the permissions framework described in
greater detail below.

Local cloud services 412 represents hardware, software,
firmware, or some combination thereof, that provides the
functionality of the flexible permission management frame-
work described herein. In addition to the permissions man-
agement functions which will be described in greater detail,
local cloud services 412 also provides file storage and
retrieval services to clients 108 and synchronizes the client
files/objects stored in nonvolatile memory with the files/
objects stored on cloud 102. The file storage and synchro-
nization functions of local cloud services 412 will not be
described in detail, except to the extent they relate to the
permissions framework, so as not to unnecessarily compli-
cate this disclosure.

FIG. 5 is a relational diagram of the functional aspects of
local cloud services 412 of the local cloud enhanced NAS
device 104 of FIG. 4. Local file system 502 represents the
native file system of NAS device 104 (local cloud). A server
application 504 receives requests for file operations (read,
write, etc.) from clients 108 and services those requests via
local file system 502. In this particular example, clients 108
are WINDOWS® clients, and server application 504 is
Samba. However, the present invention is not limited to
these particular examples. Rather, these particular examples,
as well as others used in this disclosure, are merely used to
provide a clear explanation of the invention. Indeed, a
significant advantage of the present invention is that it can
be implemented with a wide variety of server applications
and file systems.

Windows client 108 is a device/process used to access the
files in the file server. A user maps the “Share” that is
exported by the file server via Server Messaging Block
(SMB) protocol into the file system namespace of the
Windows client and then accesses the files and folders
within the exported share.

Samba 504 is the open source MS WINDOWS® net-
working protocol server (SMB protocol server). The Win-
dows client 108 useS Server Messaging Block (SMB)
protocol to access Windows file servers. Samba exports the
files and folders residing in the file server to external
Windows clients via SMB protocol.

Ordinarily, the file permission scheme of local cloud 104
would depend on local file system 502 and/or server 504.
However, the permissions framework of cloud server 102 is
imposed on local cloud 104 by interposing a virtual file
system (VES) module 506 between server 504 and local file
system 502. Local file system 502 is responsible for orga-
nizing and giving access to the files and folders stored in
nonvolatile memory 414. The contents of the local filesys-
tem are only accessible natively via filesystem system calls.
Samba exports these contents via Shares to Windows clients
108 over local network 109 via SMB protocol. VFS Module
presents a virtual file system (e.g., a directory tree) to clients
and imposes permissions based on that virtual file system. In
particular, a permission enforcement process of VFS module
506 intercepts attempted file operations to local file system
502 and either permits or denies the file operations based on
a permissions map (file) 508. Permissions map 508 defines

US 9,483,491 B2

7

the same permissions enforced by cloud 102, so that per-
missions are consistent whether a client attempts to access a
file via cloud 102 or local cloud 104.

In greater detail, Samba 504 uses filesystem system call
interface to access the files and folders residing in the local
file system 502. Samba exports a standard API called Virtual
File System (VFS) API to facilitate interception of these
calls and manipulation the call stack. The example embodi-
ment of the present invention uses the Samba VFS interface
to intercept the filesystem system calls and change the file
system behavior to accommodate cloud connectivity. VFS
module 506 detects filesystem changes for synchronization
purposes, so that only modified files need to be moved to
cloud 102 to keep the file system of local cloud 104
synchronized with the file system of cloud 102.

VFS module 506 enforces the permissions of cloud 102
before the operating system of local cloud 104 enforces its
own permissions on the filesystem system calls. VFS mod-
ule 506 first intercepts the filesystem system call and
enforces the cloud permissions. If the cloud permissions
permit access, VFS modules 506 elevates the access privi-
leges to “root” or “super user” access, thereby overriding
operating system access. On the other hand, if the permis-
sion enforcement of VFS module 506 denies access, access
is denied from VFS module 506 itself, without ever calling
the native filesystem. Note that the cloud permission frame-
work can be different than Unix or Windows ACL permis-
sion frameworks. Indeed, the cloud permission framework
and imposing the cloud permission framework on local
cloud 104 are considered to be separate, inventive aspects of
the present invention. However, the particular cloud permis-
sion semantics are not essential elements of the invention.

In this example embodiment of the invention, the cloud
permission framework uses access control lists (ACLs). The
ACLs are optimized for performance and persisted on disk
as permission map 508. However, permission map 508 is
copied to working memory 406 for permission enforcement,
to increase performance in accessing file system 502 via
Samba 504.

Permission backend 510 is responsible for reading and
managing the in-memory contents of permission map 508.
Permission backend 510 manages a shared memory area of
working memory 406 where permission map 508 is stored.
This shared memory area is shared by many Samba protocol
server processes to enforce permissions. When a new/altered
permission map 508 is available, permission backend 510
enforces proper locking to seamlessly swap the prior per-
mission map 508 with the new permission map 508 so that
the new permissions schema will be enforced.

Synchronizer 512 is responsible for downloading the
cloud permission schema to local cloud 104. The cloud 102
permission schema is downloaded, via cloud interface 514
and Internet 106, as an XML formatted file and transformed
locally to Java Script Object Notation (JSON) format and
stored in JSON storage for permission backend 510 to
translate to the native-optimized permission map 508 for-
mat. Permission backend 510 parses/converts the contents of
JSON storage 516 (JSON formatted permission schema) to
construct optimized permission map 508.

The permission enforcement module of VFS Module 506
uses a translation lookup buffer (TL.B) 518 to store recently
enforced permission results for each process. Permission
enforcement by the permission enforcement module
includes traversing the cloud file system hierarchy and
consolidating ACLs stored in each directory node in that
cloud file system hierarchy. This requires a significant
amount of processing, and this overhead is in the perfor-

15

30

40

45

55

8

mance path of the networked file system 502 access. Storing
the recently enforced results in TLB 518 avoids repeatedly
incurring this performance overhead. During permission
enforcement, the permission enforcement process of VFS
module 506 first accesses TLB 518 to determine whether
there is already an enforcement result for a given path stored
therein. If there is no such result in the TLB, the permission
enforcement process then goes through the detailed permis-
sion enforcement operation and stores the result in the TLB
once the enforcement result is obtained. Because the TLB is
an in-memory construct, stored per Samba process, TLB
space is limited. Therefore only a predetermined number of
the most recent permissions enforcement results are stored
in the TLB.

Sweeper 520 is invoked at system startup time. Sweeper
520 is responsible for maintaining permission system con-
figuration and instantiating the permission framework.
Sweeper 520 is also responsible for starting the permission
subsystem before the Samba protocol server.

Messaging module 522 coordinates communication
between various modules/processes. For example, when
synchronizer 512 causes a new permissions map 508 to be
downloaded from cloud 102, synchronizer 512 instructs
permission backend 512 to substitute the new permission
map 508 for the old one. Messaging module 522 is respon-
sible for conveying this information between synchronizer
512 and permission backend 510.

Cloud interface 514 is exported by cloud 102 and facili-
tates communications between cloud 102 and local cloud
104. Such communication includes, but is not limited to,
synchronization of files systems and permissions between
cloud 102 and local cloud 104. In addition, cloud interface
514 facilitates communication with a local user interface
(UI) 524, which, for example, facilitates the administration
of the local permissions functionality by a systems admin-
istrator.

An object of the invention is to eliminate current errors in
permissions handling. Another object is increased efficiency.

At a high level, there will be a new data structure to
describe the permissions associated with a file system tree.
This will contain an element for each folder that has some
permissions set, and will be passed between the client 104
and server 102 during synchronization. One will also be
created by permission backend 510 from information
received from the Ul Backend.

The operation of an example embodiment of the VFS
permission subsystem will now be described from the per-
spectives of cloud interface 514, permission storage back-
end, and the permission enforcement subsystem of VFS
module 506.

First, operation from the perspective of cloud interface
514 will be described. The permissions are set and main-
tained (the authoritative copy) by cloud 102. Cloud interface
514 in conjunction with the data synchronization subsystem
of synchronizer 512 detects permission changes at cloud 102
and synchronizes the permissions. The permission changes
are synchronized at the next data synchronization cycle or
when the customer explicitly calls for reset permissions
from the reset permissions tab.

When it determined that it is time to synchronize the
permissions cloud interface 514, in conjunction with syn-
chronizer 512, does the following. First, cloud interface 514
calls the cloud 102 API to download the cloud permissions
for the domain (e.g., set of files, workgroup, etc. for a
particular customer). The permissions are encoded in an
XML file, which is then persisted to disk. At all times there
should be only 1 copy of the file on disk. The permission

US 9,483,491 B2

9

synchronization can occur if explicitly invoked via LUI for
a permission synchronization or automatically if permis-
sions change in the cloud files system at cloud 102 or local
cloud 104.

Next, cloud interface 514 processes the permissions XML
file and encodes the permissions into 2 JSON files and stores
the files in JSON storage 516. When the permissions are
being processed there can be 2 copies of each file indexed by
a monotonically increasing number. However, after the
permissions are processed there should be only one copy of
each file.

Once the JSON files are created cloud interface 514 sends
a message, via messaging subsystem 522, to sweeper 520 to
indicate that a new permission file is available for processing
by permission backend 510. The message is sent via a Unix
socket. Once the message is sent, permission backend 510
will start processing the JSON files in JSON storage 516.
The new permission schema will not be effective until the
downloaded permission file is completely processed.

Permission backend 510 takes the JSON file(s) down-
loaded by the cloud interface and loads it/them in to a
structure that the permission enforcement module of VFS
module 506 can understand. Once the JSON files are con-
verted to this format, a file (permissions map 508) that can
be reloaded to memory when the system restarts is persisted
to disk, which eliminates the need to reprocess the JSON
files. At any time, permission enforcement should not and
need not be interrupted. Therefore, no client should ever
loose share access due to a data or permission synchroni-
zation. In previous versions we walk the file system to reset
permissions. This step in unnecessary in the disclosed
example embodiment.

Permissions map 508 contains an in-memory representa-
tion of the permission framework. Permission backend 510
is also responsible for converting a given file path to an ACL.
that represents the cloud permission enforcement. The per-
missions are enforced based on this resolved ACL.

The permission enforcement subsystem of VFS Module
506 intercepts the filesystem calls Samba 504 makes and
enforces cloud permissions on them. The credentials for
permission enforcement are determined from the euid of the
process and the process owner’s primary and supplementary
group ids. The ACL is provided by permission backend 510.
Once the permission is enforced, VFS module 506 becomes
a “super user” and performs the operation to override the
operating system permission enforcement. In other words,
VFS module 506 has access to at least all of the client user
files in local file system 502.

The permission enforcement operations can be catego-
rized in to 3 different sections. First, there can be permission
enforcement based on paths. For example, paths/,/Shared,
/Private and /Private/<user name>/ directories have special
permissions regardless of what ACL is set on it. Second,
there can be user enforcement based on trustees. For
example, the enforcement is done based on the ACL set on
the filesystem object. The ACL is compared with the
requested operation and the trustees (i.e the euid of the
process and primary an supplementary group ids of the euid)
and the operations performed by the trustees. Third, there
can be permission enforcement based on implicit permis-
sions. For example, the Administrators group can have
special permissions. Additionally, special permissions can
be enforced for windows special temp files to make sense of
the duality of cloud delete permission semantics.

20

40

45

50

10

The following is a summary of the relationships and
functions of the components and subcomponents of FIG. 5.
Some of the subcomponents are not explicitly shown in FIG.
5.

The Cloud API 514 communicates with the server and the
permission interpreter. The permission interpreter is embed-
ded in permission backend 510 and is operative to move
permissions between either the server via the Cloud API, or
the UI via the UI Backend, and the core permission handling
components of the client backend. The permission inter-
preter will perform any marshalling/unmarshalling and will
pass the permissions to the permission backend API or the
messaging API. The Ul Backend is embedded in local user
interface (Ul) 524. It is the backend of the UI 524, and
interacts with the web UI (Local User Interface 524) to
communicate changes to the Permission Interpreter, or to the
Enforcement Engine to determine whether to permit opera-
tions. The web UI (Local User Interface 524) passes per-
missions updates and operation validation requests to the Ul
Backend.

The permission backend API is embedded in permission
backend 510 and is the interface to the permission backend
storage (storage for permission map 508). It will service
requests to read or write permissions from the permission
interpreter, messaging API or sweeper 520. The following
calls will be provided to the Sweeper:

1. “int get_permission_map_size(char *path) returns the

in-memory size of the map, or -1 on failure.

2. int populate_permission_map(void *addr, char *path)
populates the address with the permission map. It
returns -1 on failure.

The permission backend storage provides on-disk storage
of the permissions map and is accessed through the permis-
sion backend API. It also performs any necessary format
conversion for disk storage.

The messaging API is embedded in messaging 522 and
provides an interface to sweeper 520. Sweeper 520 receives
messages from the permissions interpreter and config file
API. These messages include, but are not limited to: noti-
fication of a new permission map to load into memory;
notification of an update to apply to the current permission
map; request to decrease the memory footprint; and request
to increase the memory footprint. Sweeper 520 will perform
the work associated with these messages.

The high level flow to update a new permission map 508
is as follows. First, permissions interpreter messages
sweeper 520 that a new permission map 508 is available,
providing the size and path. Then, sweeper 520 gets the
shared memory key for the new memory map segment.
Next, sweeper 520 requests the in-memory map size from
the permissions backend API given the path. Then, sweeper
520 creates the new shared memory segment. Next, sweeper
520 will call the permissions backend API, providing the
path and size of the map, and the address of the shared
memory segment. Then, permissions backend API will
process the on-disk permissions map and write the in-
memory format of the map into shared memory. Finally,
sweeper 520 will mark this new shared memory segment as
the new in-memory permissions map 508.

Permission map 508 is the in-memory data structure
representation of the current permissions. This will be
updated by sweeper 520 and provided to VFS module 506.
Lookup TLB is a cache of the n most recent lookups of
permissions associated with a path.

For OLC, on the NAS appliance, VFS module 506 sits
between the Linux file system (e.g., local file system 502)
syscall interface and Samba 504. It will intercept all file

US 9,483,491 B2

11

operations and call the permission enforcement engine to
determine whether to allow or disallow the operation.

It is suggested to allow all operations for file types other
than regular file or directory (S_ISREGIS_ISDIR).

The enforcement engine checks the credentials of opera-
tions against the ACL and determines whether to allow the
operation. For performance, the enforcement engine will
rely upon ordering of the Aces within the ACL to be the
administrator, then other users, then groups. This will be
called by VFS Module 506 to validate operation requests
from the mapped drive, or by the Ul Backend to validate
operation requests from the Web Ul 524, so that permissions
are enforced consistently.

The presentation engine provides a view to the user of the
permissions on the file system.

The config file API is an interface to manage configura-
tion parameters. Operations of the config file API include,
but are not limited to: sweep frequency; sweep memory
usage; cache size; and permission filtering functionality.

Samba 504 is the file mapping component between the
user applications 108 and the on disk data. The VFS Module
506 intercepts Samba file operations and performs any
enforcement or translation.

FIG. 6 is an example data structure for in-memory per-
missions map 508. Some properties of the example data
structure are as follows. The data structure is contained
within a contiguous virtual memory segment. In addition,
the data structure can be persisted to disk without any
marshalling and can be read back to memory without any
unmarshalling. It can handle variable size data and provides
optimum space utilization. In addition, all locations are
addressed within the memory segment, and addressing is
independent of the location where the memory is created.
The data structure maintains the filesystem tree hierarchy
and is easy and efficient to search. It is also, extensible and
can be extended to load on demand.

FIG. 7 is an example data structure for the permission
metadata header field of the data structure of FIG. 6. Some
properties of the header field are as follows. The header
consist of permission area meta data and section location
information. Each section includes an “offset” field, a “size
field”, and a “next free offset” field. The “offset” field
includes data indicative of the position of the start of the
section relative to the beginning of the memory area. The
“size” field includes data indicative of the full size of the
area. The “next free offset” field includes data indicative of
the next free space within the section.

The “Next Map” field is useful in the federation of maps.
It facilitates loading the maps into memory on demand. It is
used similar to virtual memory paging and can be scaled to
the map size.

FIG. 8 is an example relational diagram for stored objects,
corresponding to the data structure of FIGS. 6-7. Features of
the object relationships include, but are not limited to, the
following. An Fselem (file system element) object will hold
the offset of its parent and a pointer to name and ACL
objects. The parent pointer is to another Fselem object. An
Fselem will also hold a pointer to its child list. The child list
holds pointers to child fselem objects. This is recursive tree
search enabled. The leaf and root object(s) is/are specially
marked. The ACL and Name objects are variable size, but
the Fselem objects are fixed size. Finally, the child list
objects are variable size

FIG. 9 is a directory structure corresponding to the
relational diagram of FIG. 8. This illustrates that relation-
ships in a conventional file directory tree can be maintained
in the example permissions data structure of the present

15

25

35

40

45

12

invention and used to convert a conventional permissions
directory tree to an associated permissions database.

FIG. 10 is a flow chart 1000 summarizing an example
method of implementing a permissions framework of the
present invention. In a first step 1002 a permissions frame-
work for a remote file storage system is defined. Then, in a
second step 1004, access to objects on the remote file storage
system is controlled according to the permissions frame-
work. Next, in a third step 1006, the permissions framework
is transferred to a client file storage system. Then, in a fourth
step 1008, access to objects on the client file storage system
is controlled according to the permissions framework.
Finally, in a fifth step 1010, synchronization of the permis-
sions framework on the remote file storage system and the
client file storage system is maintained.

The description of particular embodiments of the present
invention is now complete. Many of the described features
may be substituted, altered, or omitted without departing
from the scope of the invention. For example, in the
described embodiment, newly created files and folders will
inherit the permissions associated with the parent folder of
the newly created file. However, some other default permis-
sions scheme can be used for newly created files. Also,
specific examples of commercially available components
(e.g., WINDOWS® client, Samba, etc.) are provided. How-
ever, the invention can be practiced with any type of client
system, operating system, file system, and so on. These and
other deviations from the particular embodiments shown
will be apparent to those skilled in the art, particularly in
view of the foregoing disclosure.

We claim:

1. A method of managing file permissions in a remote file
storage system, said method comprising:

defining permissions for said remote file storage system;

controlling access to objects on said remote file storage

system according to said permissions of said remote file
storage system,
transferring said permissions to a client file storage sys-
tem remote from said remote file storage system;

controlling access to objects on said client file storage
system according to said permissions of said remote file
storage system,

altering said permissions of said remote file storage

system at said remote file storage system;

controlling access to objects on said remote file storage

system according to said altered permissions of said
remote file storage system;

transferring said altered permissions to said client file

storage system; and

controlling access to objects on said client file storage

system according to said altered permissions of said
remote file storage system; and wherein

said step of controlling access to objects on said client file

storage system according to said permissions of said
remote file storage system includes overriding permis-
sions of said client file storage system.

2. The method of claim 1, additionally comprising:

defining a virtual file system structure for said objects on

said remote file storage system; and

defining said permissions based at least in part on said

virtual file system structure.

3. The method of claim 1, wherein said step of transfer-
ring said altered permissions to said client file storage
system occurs in conjunction with a data synchronization
process between said remote file storage system and said
client file storage system.

US 9,483,491 B2

13

4. The method of claim 1, wherein said step of transfer-
ring said altered permissions to said client file storage
system occurs in response to a command from a user.

5. The method of claim 1, wherein said step of transfer-
ring said altered permissions to said client file storage
system occurs in response to said step of altering said
permissions.

6. The method of claim 1, additionally comprising:

locally altering said permissions of said remote file stor-
age system at said client file storage system;

controlling access to objects on said client file storage
system according to said locally-altered permissions of
said remote file storage system;

transferring said locally-altered permissions to said
remote file storage system; and

controlling access to objects on said remote file storage
system according to said locally-altered permissions of
said remote file storage system.

7. The method of claim 6, wherein said step of transfer-
ring said locally-altered permissions to said remote file
storage system occurs in conjunction with a data synchro-
nization process between said remote file storage system and
said client file storage system.

8. The method of claim 6, wherein said step of transfer-
ring said locally-altered permissions to said remote file
storage system occurs in response to a command from a user.

9. The method of claim 6, wherein said step of transfer-
ring said locally-altered permissions to said remote file
storage system occurs in response to said step of locally
altering said permissions of said remote file storage system
at said client file storage system.

10. The method of claim 1, wherein said step of defining
permissions for said remote file storage system includes
associating access control lists with said objects on said
remote file storage system.

11. The method of claim 1, additionally comprising:

defining a plurality of permissions sets for said remote file
storage system,

associating each of said permissions sets with a respective
one of a plurality of clients;

controlling access to objects on said remote file storage
system by said clients according to said permissions
sets of said remote file storage system;

transferring each of said permissions sets to a respective
one of a plurality of client file storage systems each
associated with one of said plurality of clients, said
client file storage systems being remote from said
remote file storage system; and

controlling access to objects on said client file storage
systems according to said permission sets of said
remote file storage system associated with said clients.

12. A remote file storage system comprising:

memory for storing file objects received from a client;

a client interface operative to receive said file objects
from said client, to provide said file objects to said
client, to receive data indicative of permissions asso-
ciated with said file objects, and to provide a permis-
sions file to said client;

a permissions file generator operative to generate said
permissions file based on said data indicative of said
permissions associated with said file objects, said per-
missions file defining different permissions for a plu-
rality of said file objects; and

a permissions enforcer operative to control access to said
file objects according to said permissions file; and
wherein

10

15

20

25

30

35

40

45

50

55

60

14

said client interface is operative to receive additional data
indicative of permissions associated with said file
objects;

said permissions file generator is operative to generate an
updated permissions file based at least in part on said
additional data indicative of permissions associated
with said file objects; and

said client interface is operative to provide said updated
permissions file to said client.

13. The system of claim 12, additionally comprising:

a processing unit; and wherein

said permissions file generator and said permissions
enforcer are code modules executed by said processing
unit.

14. The system of claim 12, additionally comprising:

a virtual file system module operative to define a virtual
file system structure for said file objects; and wherein

said permissions file generator is operative to generate
said permissions file based at least in part on said
virtual file system structure.

15. The system of claim 12, additionally comprising a

synchronizer operative to:

synchronize said file objects stored on said remote file
storage system with file objects stored on a file storage
system of said client; and

synchronize said permissions file with a permissions file
on said file storage system of said client.

16. The system of claim 12, wherein said permissions file

associates access control lists with said file objects.

17. A local file storage system for use with a remote file
storage system, said local file storage system including:

memory for storing local file objects from local clients;

a client interface operative to receive said local file
objects from said local clients and to provide said local
file objects to said local clients;

a remote file server interface operative to receive a
permissions file from a remote file server, said permis-
sions file being indicative of permissions associated
with remote file objects stored on said remote file
server, said remote file objects being copies of said
local file objects; and

a permissions enforcer operative to control access to said
local file objects by said local clients according to said
permissions defined by said permissions file for said
remote file objects; and wherein

said remote file server interface is further operative to
receive an updated permissions file from said remote
file server, said updated permissions file being indica-
tive of updated permissions associated with at least
some of said remote file objects stored on said remote
file server; and

said permissions enforcer is further operative to control
access to said local file objects by said local clients
according to said updated permissions defined by said
updated permissions file for said remote file objects.

18. The system of claim 17, additionally comprising:

a virtual file system module operative to present a virtual
file system structure associated with said local file
objects to said local clients; and wherein

said permissions file is based at least in part on said virtual
file system structure.

19. The system of claim 18, wherein said permissions file
associates access control lists with elements of said virtual
file system structure.

20. A file storage system comprising:

a local file storage system including memory, said local

file storage system being operative to store file objects

US 9,483,491 B2

15

from local clients in said memory and to provide said
file objects to said local clients from said memory;

a remote file storage system including memory, said
remote file storage system being operative to store
copies of said file objects in said memory of said
remote file storage system and to provide said copies of
said file objects from said memory of said remote file
storage system,

a permissions file generator on at least one of said local
file storage system and said remote file storage system
and operative to generate a permissions file and to
provide said permissions file to said local file storage
system and said remote file storage system;

a first permissions enforcer on said local file storage
system, said first permissions enforcer operative to
control access to said file objects on said local file
storage system according to said permissions file; and

a second permissions enforcer on said remote file storage
system, said second permissions enforcer operative to
control access to said file objects on said remote file
storage system according to said permissions file; and
wherein

responsive to receiving additional data indicative of per-
missions associated with said file objects stored on said
remote file storage system, said permissions file gen-
erator is further operative to
generate an updated permissions file based at least in

part on said additional data and
provide said updated permissions file to said local file
storage system and said remote file storage system;
responsive to receiving said updated permissions file, said
first permissions enforcer is operative to control access
to said file objects on said local file storage system
according to said updated permissions file; and

10

15

20

25

30

16

responsive to receiving said updated permissions file, said
second permissions enforcer is operative to control
access to said file objects on said remote file storage
system according to said updated permissions file.

21. The system of claim 20, additionally comprising:

a file object synchronizer operative to synchronize said
file objects stored on said remote server and said file
objects stored on said local server; and

a permissions file synchronizer operative to synchronize
said permissions file on said remote server and said
permissions file on said local server.

22. The system of claim 20, wherein said permissions file
defines different permissions for a plurality of said file
objects.

23. The method of claim 1, wherein said step of trans-
ferring said permissions to a client file storage system
remote from said remote file storage system includes trans-
ferring permissions information defining different permis-
sions for a plurality of said objects.

24. The system of claim 17, wherein said permissions file
defines different permissions for a plurality of said remote
file objects.

25. The system of claim 17, wherein said permissions
enforcer is operative to control access to said local file
objects by analyzing said permissions file and overriding
local permissions to grant or deny access to said local file
objects.

26. The method of claim 1, wherein said step of trans-
ferring said permissions to a client file storage system
remote from said remote file storage system occurs over a
wide area network.

